crux-musl

Unnamed repository; edit this file 'description' to name the repository.
git clone https://codeberg.org/emmett1/crux-musl
Log | Files | Refs | README | LICENSE

tree.h (25768B)


      1 /*	$NetBSD: tree.h,v 1.20 2013/09/14 13:20:45 joerg Exp $	*/
      2 /*	$OpenBSD: tree.h,v 1.13 2011/07/09 00:19:45 pirofti Exp $	*/
      3 /*
      4  * Copyright 2002 Niels Provos <provos@citi.umich.edu>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #ifndef	_SYS_TREE_H_
     29 #define	_SYS_TREE_H_
     30 
     31 /*
     32  * This file defines data structures for different types of trees:
     33  * splay trees and red-black trees.
     34  *
     35  * A splay tree is a self-organizing data structure.  Every operation
     36  * on the tree causes a splay to happen.  The splay moves the requested
     37  * node to the root of the tree and partly rebalances it.
     38  *
     39  * This has the benefit that request locality causes faster lookups as
     40  * the requested nodes move to the top of the tree.  On the other hand,
     41  * every lookup causes memory writes.
     42  *
     43  * The Balance Theorem bounds the total access time for m operations
     44  * and n inserts on an initially empty tree as O((m + n)lg n).  The
     45  * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
     46  *
     47  * A red-black tree is a binary search tree with the node color as an
     48  * extra attribute.  It fulfills a set of conditions:
     49  *	- every search path from the root to a leaf consists of the
     50  *	  same number of black nodes,
     51  *	- each red node (except for the root) has a black parent,
     52  *	- each leaf node is black.
     53  *
     54  * Every operation on a red-black tree is bounded as O(lg n).
     55  * The maximum height of a red-black tree is 2lg (n+1).
     56  */
     57 
     58 #define SPLAY_HEAD(name, type)						\
     59 struct name {								\
     60 	struct type *sph_root; /* root of the tree */			\
     61 }
     62 
     63 #define SPLAY_INITIALIZER(root)						\
     64 	{ NULL }
     65 
     66 #define SPLAY_INIT(root) do {						\
     67 	(root)->sph_root = NULL;					\
     68 } while (/*CONSTCOND*/ 0)
     69 
     70 #define SPLAY_ENTRY(type)						\
     71 struct {								\
     72 	struct type *spe_left; /* left element */			\
     73 	struct type *spe_right; /* right element */			\
     74 }
     75 
     76 #define SPLAY_LEFT(elm, field)		(elm)->field.spe_left
     77 #define SPLAY_RIGHT(elm, field)		(elm)->field.spe_right
     78 #define SPLAY_ROOT(head)		(head)->sph_root
     79 #define SPLAY_EMPTY(head)		(SPLAY_ROOT(head) == NULL)
     80 
     81 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
     82 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do {			\
     83 	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);	\
     84 	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
     85 	(head)->sph_root = tmp;						\
     86 } while (/*CONSTCOND*/ 0)
     87 
     88 #define SPLAY_ROTATE_LEFT(head, tmp, field) do {			\
     89 	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);	\
     90 	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
     91 	(head)->sph_root = tmp;						\
     92 } while (/*CONSTCOND*/ 0)
     93 
     94 #define SPLAY_LINKLEFT(head, tmp, field) do {				\
     95 	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
     96 	tmp = (head)->sph_root;						\
     97 	(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);		\
     98 } while (/*CONSTCOND*/ 0)
     99 
    100 #define SPLAY_LINKRIGHT(head, tmp, field) do {				\
    101 	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
    102 	tmp = (head)->sph_root;						\
    103 	(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);	\
    104 } while (/*CONSTCOND*/ 0)
    105 
    106 #define SPLAY_ASSEMBLE(head, node, left, right, field) do {		\
    107 	SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field);	\
    108 	SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
    109 	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field);	\
    110 	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field);	\
    111 } while (/*CONSTCOND*/ 0)
    112 
    113 /* Generates prototypes and inline functions */
    114 
    115 #define SPLAY_PROTOTYPE(name, type, field, cmp)				\
    116 void name##_SPLAY(struct name *, struct type *);			\
    117 void name##_SPLAY_MINMAX(struct name *, int);				\
    118 struct type *name##_SPLAY_INSERT(struct name *, struct type *);		\
    119 struct type *name##_SPLAY_REMOVE(struct name *, struct type *);		\
    120 									\
    121 /* Finds the node with the same key as elm */				\
    122 static __inline struct type *						\
    123 name##_SPLAY_FIND(struct name *head, struct type *elm)			\
    124 {									\
    125 	if (SPLAY_EMPTY(head))						\
    126 		return(NULL);						\
    127 	name##_SPLAY(head, elm);					\
    128 	if ((cmp)(elm, (head)->sph_root) == 0)				\
    129 		return (head->sph_root);				\
    130 	return (NULL);							\
    131 }									\
    132 									\
    133 static __inline __unused struct type *					\
    134 name##_SPLAY_NEXT(struct name *head, struct type *elm)			\
    135 {									\
    136 	name##_SPLAY(head, elm);					\
    137 	if (SPLAY_RIGHT(elm, field) != NULL) {				\
    138 		elm = SPLAY_RIGHT(elm, field);				\
    139 		while (SPLAY_LEFT(elm, field) != NULL) {		\
    140 			elm = SPLAY_LEFT(elm, field);			\
    141 		}							\
    142 	} else								\
    143 		elm = NULL;						\
    144 	return (elm);							\
    145 }									\
    146 									\
    147 static __unused __inline struct type *					\
    148 name##_SPLAY_MIN_MAX(struct name *head, int val)			\
    149 {									\
    150 	name##_SPLAY_MINMAX(head, val);					\
    151         return (SPLAY_ROOT(head));					\
    152 }
    153 
    154 /* Main splay operation.
    155  * Moves node close to the key of elm to top
    156  */
    157 #define SPLAY_GENERATE(name, type, field, cmp)				\
    158 struct type *								\
    159 name##_SPLAY_INSERT(struct name *head, struct type *elm)		\
    160 {									\
    161     if (SPLAY_EMPTY(head)) {						\
    162 	    SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;	\
    163     } else {								\
    164 	    int __comp;							\
    165 	    name##_SPLAY(head, elm);					\
    166 	    __comp = (cmp)(elm, (head)->sph_root);			\
    167 	    if(__comp < 0) {						\
    168 		    SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
    169 		    SPLAY_RIGHT(elm, field) = (head)->sph_root;		\
    170 		    SPLAY_LEFT((head)->sph_root, field) = NULL;		\
    171 	    } else if (__comp > 0) {					\
    172 		    SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
    173 		    SPLAY_LEFT(elm, field) = (head)->sph_root;		\
    174 		    SPLAY_RIGHT((head)->sph_root, field) = NULL;	\
    175 	    } else							\
    176 		    return ((head)->sph_root);				\
    177     }									\
    178     (head)->sph_root = (elm);						\
    179     return (NULL);							\
    180 }									\
    181 									\
    182 struct type *								\
    183 name##_SPLAY_REMOVE(struct name *head, struct type *elm)		\
    184 {									\
    185 	struct type *__tmp;						\
    186 	if (SPLAY_EMPTY(head))						\
    187 		return (NULL);						\
    188 	name##_SPLAY(head, elm);					\
    189 	if ((cmp)(elm, (head)->sph_root) == 0) {			\
    190 		if (SPLAY_LEFT((head)->sph_root, field) == NULL) {	\
    191 			(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
    192 		} else {						\
    193 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
    194 			(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
    195 			name##_SPLAY(head, elm);			\
    196 			SPLAY_RIGHT((head)->sph_root, field) = __tmp;	\
    197 		}							\
    198 		return (elm);						\
    199 	}								\
    200 	return (NULL);							\
    201 }									\
    202 									\
    203 void									\
    204 name##_SPLAY(struct name *head, struct type *elm)			\
    205 {									\
    206 	struct type __node, *__left, *__right, *__tmp;			\
    207 	int __comp;							\
    208 \
    209 	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
    210 	__left = __right = &__node;					\
    211 \
    212 	while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) {		\
    213 		if (__comp < 0) {					\
    214 			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
    215 			if (__tmp == NULL)				\
    216 				break;					\
    217 			if ((cmp)(elm, __tmp) < 0){			\
    218 				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
    219 				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
    220 					break;				\
    221 			}						\
    222 			SPLAY_LINKLEFT(head, __right, field);		\
    223 		} else if (__comp > 0) {				\
    224 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
    225 			if (__tmp == NULL)				\
    226 				break;					\
    227 			if ((cmp)(elm, __tmp) > 0){			\
    228 				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
    229 				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
    230 					break;				\
    231 			}						\
    232 			SPLAY_LINKRIGHT(head, __left, field);		\
    233 		}							\
    234 	}								\
    235 	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
    236 }									\
    237 									\
    238 /* Splay with either the minimum or the maximum element			\
    239  * Used to find minimum or maximum element in tree.			\
    240  */									\
    241 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
    242 {									\
    243 	struct type __node, *__left, *__right, *__tmp;			\
    244 \
    245 	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
    246 	__left = __right = &__node;					\
    247 \
    248 	while (1) {							\
    249 		if (__comp < 0) {					\
    250 			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
    251 			if (__tmp == NULL)				\
    252 				break;					\
    253 			if (__comp < 0){				\
    254 				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
    255 				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
    256 					break;				\
    257 			}						\
    258 			SPLAY_LINKLEFT(head, __right, field);		\
    259 		} else if (__comp > 0) {				\
    260 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
    261 			if (__tmp == NULL)				\
    262 				break;					\
    263 			if (__comp > 0) {				\
    264 				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
    265 				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
    266 					break;				\
    267 			}						\
    268 			SPLAY_LINKRIGHT(head, __left, field);		\
    269 		}							\
    270 	}								\
    271 	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
    272 }
    273 
    274 #define SPLAY_NEGINF	-1
    275 #define SPLAY_INF	1
    276 
    277 #define SPLAY_INSERT(name, x, y)	name##_SPLAY_INSERT(x, y)
    278 #define SPLAY_REMOVE(name, x, y)	name##_SPLAY_REMOVE(x, y)
    279 #define SPLAY_FIND(name, x, y)		name##_SPLAY_FIND(x, y)
    280 #define SPLAY_NEXT(name, x, y)		name##_SPLAY_NEXT(x, y)
    281 #define SPLAY_MIN(name, x)		(SPLAY_EMPTY(x) ? NULL	\
    282 					: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
    283 #define SPLAY_MAX(name, x)		(SPLAY_EMPTY(x) ? NULL	\
    284 					: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
    285 
    286 #define SPLAY_FOREACH(x, name, head)					\
    287 	for ((x) = SPLAY_MIN(name, head);				\
    288 	     (x) != NULL;						\
    289 	     (x) = SPLAY_NEXT(name, head, x))
    290 
    291 /* Macros that define a red-black tree */
    292 #define RB_HEAD(name, type)						\
    293 struct name {								\
    294 	struct type *rbh_root; /* root of the tree */			\
    295 }
    296 
    297 #define RB_INITIALIZER(root)						\
    298 	{ NULL }
    299 
    300 #define RB_INIT(root) do {						\
    301 	(root)->rbh_root = NULL;					\
    302 } while (/*CONSTCOND*/ 0)
    303 
    304 #define RB_BLACK	0
    305 #define RB_RED		1
    306 #define RB_ENTRY(type)							\
    307 struct {								\
    308 	struct type *rbe_left;		/* left element */		\
    309 	struct type *rbe_right;		/* right element */		\
    310 	struct type *rbe_parent;	/* parent element */		\
    311 	int rbe_color;			/* node color */		\
    312 }
    313 
    314 #define RB_LEFT(elm, field)		(elm)->field.rbe_left
    315 #define RB_RIGHT(elm, field)		(elm)->field.rbe_right
    316 #define RB_PARENT(elm, field)		(elm)->field.rbe_parent
    317 #define RB_COLOR(elm, field)		(elm)->field.rbe_color
    318 #define RB_ROOT(head)			(head)->rbh_root
    319 #define RB_EMPTY(head)			(RB_ROOT(head) == NULL)
    320 
    321 #define RB_SET(elm, parent, field) do {					\
    322 	RB_PARENT(elm, field) = parent;					\
    323 	RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL;		\
    324 	RB_COLOR(elm, field) = RB_RED;					\
    325 } while (/*CONSTCOND*/ 0)
    326 
    327 #define RB_SET_BLACKRED(black, red, field) do {				\
    328 	RB_COLOR(black, field) = RB_BLACK;				\
    329 	RB_COLOR(red, field) = RB_RED;					\
    330 } while (/*CONSTCOND*/ 0)
    331 
    332 #ifndef RB_AUGMENT
    333 #define RB_AUGMENT(x)	do {} while (/*CONSTCOND*/ 0)
    334 #endif
    335 
    336 #define RB_ROTATE_LEFT(head, elm, tmp, field) do {			\
    337 	(tmp) = RB_RIGHT(elm, field);					\
    338 	if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) {	\
    339 		RB_PARENT(RB_LEFT(tmp, field), field) = (elm);		\
    340 	}								\
    341 	RB_AUGMENT(elm);						\
    342 	if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) {	\
    343 		if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))	\
    344 			RB_LEFT(RB_PARENT(elm, field), field) = (tmp);	\
    345 		else							\
    346 			RB_RIGHT(RB_PARENT(elm, field), field) = (tmp);	\
    347 	} else								\
    348 		(head)->rbh_root = (tmp);				\
    349 	RB_LEFT(tmp, field) = (elm);					\
    350 	RB_PARENT(elm, field) = (tmp);					\
    351 	RB_AUGMENT(tmp);						\
    352 	if ((RB_PARENT(tmp, field)))					\
    353 		RB_AUGMENT(RB_PARENT(tmp, field));			\
    354 } while (/*CONSTCOND*/ 0)
    355 
    356 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do {			\
    357 	(tmp) = RB_LEFT(elm, field);					\
    358 	if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) {	\
    359 		RB_PARENT(RB_RIGHT(tmp, field), field) = (elm);		\
    360 	}								\
    361 	RB_AUGMENT(elm);						\
    362 	if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) {	\
    363 		if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))	\
    364 			RB_LEFT(RB_PARENT(elm, field), field) = (tmp);	\
    365 		else							\
    366 			RB_RIGHT(RB_PARENT(elm, field), field) = (tmp);	\
    367 	} else								\
    368 		(head)->rbh_root = (tmp);				\
    369 	RB_RIGHT(tmp, field) = (elm);					\
    370 	RB_PARENT(elm, field) = (tmp);					\
    371 	RB_AUGMENT(tmp);						\
    372 	if ((RB_PARENT(tmp, field)))					\
    373 		RB_AUGMENT(RB_PARENT(tmp, field));			\
    374 } while (/*CONSTCOND*/ 0)
    375 
    376 /* Generates prototypes and inline functions */
    377 #define RB_PROTOTYPE(name, type, field, cmp)				\
    378 	RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
    379 #define	RB_PROTOTYPE_STATIC(name, type, field, cmp)			\
    380 	RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
    381 #define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr)		\
    382 attr void name##_RB_INSERT_COLOR(struct name *, struct type *);		\
    383 attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
    384 attr struct type *name##_RB_REMOVE(struct name *, struct type *);	\
    385 attr struct type *name##_RB_INSERT(struct name *, struct type *);	\
    386 attr struct type *name##_RB_FIND(struct name *, struct type *);		\
    387 attr struct type *name##_RB_NFIND(struct name *, struct type *);	\
    388 attr struct type *name##_RB_NEXT(struct type *);			\
    389 attr struct type *name##_RB_PREV(struct type *);			\
    390 attr struct type *name##_RB_MINMAX(struct name *, int);			\
    391 									\
    392 
    393 /* Main rb operation.
    394  * Moves node close to the key of elm to top
    395  */
    396 #define	RB_GENERATE(name, type, field, cmp)				\
    397 	RB_GENERATE_INTERNAL(name, type, field, cmp,)
    398 #define	RB_GENERATE_STATIC(name, type, field, cmp)			\
    399 	RB_GENERATE_INTERNAL(name, type, field, cmp, __unused static)
    400 #define RB_GENERATE_INTERNAL(name, type, field, cmp, attr)		\
    401 attr void								\
    402 name##_RB_INSERT_COLOR(struct name *head, struct type *elm)		\
    403 {									\
    404 	struct type *parent, *gparent, *tmp;				\
    405 	while ((parent = RB_PARENT(elm, field)) != NULL &&		\
    406 	    RB_COLOR(parent, field) == RB_RED) {			\
    407 		gparent = RB_PARENT(parent, field);			\
    408 		if (parent == RB_LEFT(gparent, field)) {		\
    409 			tmp = RB_RIGHT(gparent, field);			\
    410 			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
    411 				RB_COLOR(tmp, field) = RB_BLACK;	\
    412 				RB_SET_BLACKRED(parent, gparent, field);\
    413 				elm = gparent;				\
    414 				continue;				\
    415 			}						\
    416 			if (RB_RIGHT(parent, field) == elm) {		\
    417 				RB_ROTATE_LEFT(head, parent, tmp, field);\
    418 				tmp = parent;				\
    419 				parent = elm;				\
    420 				elm = tmp;				\
    421 			}						\
    422 			RB_SET_BLACKRED(parent, gparent, field);	\
    423 			RB_ROTATE_RIGHT(head, gparent, tmp, field);	\
    424 		} else {						\
    425 			tmp = RB_LEFT(gparent, field);			\
    426 			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
    427 				RB_COLOR(tmp, field) = RB_BLACK;	\
    428 				RB_SET_BLACKRED(parent, gparent, field);\
    429 				elm = gparent;				\
    430 				continue;				\
    431 			}						\
    432 			if (RB_LEFT(parent, field) == elm) {		\
    433 				RB_ROTATE_RIGHT(head, parent, tmp, field);\
    434 				tmp = parent;				\
    435 				parent = elm;				\
    436 				elm = tmp;				\
    437 			}						\
    438 			RB_SET_BLACKRED(parent, gparent, field);	\
    439 			RB_ROTATE_LEFT(head, gparent, tmp, field);	\
    440 		}							\
    441 	}								\
    442 	RB_COLOR(head->rbh_root, field) = RB_BLACK;			\
    443 }									\
    444 									\
    445 attr void								\
    446 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
    447 {									\
    448 	struct type *tmp;						\
    449 	while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) &&	\
    450 	    elm != RB_ROOT(head)) {					\
    451 		if (RB_LEFT(parent, field) == elm) {			\
    452 			tmp = RB_RIGHT(parent, field);			\
    453 			if (RB_COLOR(tmp, field) == RB_RED) {		\
    454 				RB_SET_BLACKRED(tmp, parent, field);	\
    455 				RB_ROTATE_LEFT(head, parent, tmp, field);\
    456 				tmp = RB_RIGHT(parent, field);		\
    457 			}						\
    458 			if ((RB_LEFT(tmp, field) == NULL ||		\
    459 			    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
    460 			    (RB_RIGHT(tmp, field) == NULL ||		\
    461 			    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
    462 				RB_COLOR(tmp, field) = RB_RED;		\
    463 				elm = parent;				\
    464 				parent = RB_PARENT(elm, field);		\
    465 			} else {					\
    466 				if (RB_RIGHT(tmp, field) == NULL ||	\
    467 				    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
    468 					struct type *oleft;		\
    469 					if ((oleft = RB_LEFT(tmp, field)) \
    470 					    != NULL)			\
    471 						RB_COLOR(oleft, field) = RB_BLACK;\
    472 					RB_COLOR(tmp, field) = RB_RED;	\
    473 					RB_ROTATE_RIGHT(head, tmp, oleft, field);\
    474 					tmp = RB_RIGHT(parent, field);	\
    475 				}					\
    476 				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
    477 				RB_COLOR(parent, field) = RB_BLACK;	\
    478 				if (RB_RIGHT(tmp, field))		\
    479 					RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
    480 				RB_ROTATE_LEFT(head, parent, tmp, field);\
    481 				elm = RB_ROOT(head);			\
    482 				break;					\
    483 			}						\
    484 		} else {						\
    485 			tmp = RB_LEFT(parent, field);			\
    486 			if (RB_COLOR(tmp, field) == RB_RED) {		\
    487 				RB_SET_BLACKRED(tmp, parent, field);	\
    488 				RB_ROTATE_RIGHT(head, parent, tmp, field);\
    489 				tmp = RB_LEFT(parent, field);		\
    490 			}						\
    491 			if ((RB_LEFT(tmp, field) == NULL ||		\
    492 			    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
    493 			    (RB_RIGHT(tmp, field) == NULL ||		\
    494 			    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
    495 				RB_COLOR(tmp, field) = RB_RED;		\
    496 				elm = parent;				\
    497 				parent = RB_PARENT(elm, field);		\
    498 			} else {					\
    499 				if (RB_LEFT(tmp, field) == NULL ||	\
    500 				    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
    501 					struct type *oright;		\
    502 					if ((oright = RB_RIGHT(tmp, field)) \
    503 					    != NULL)			\
    504 						RB_COLOR(oright, field) = RB_BLACK;\
    505 					RB_COLOR(tmp, field) = RB_RED;	\
    506 					RB_ROTATE_LEFT(head, tmp, oright, field);\
    507 					tmp = RB_LEFT(parent, field);	\
    508 				}					\
    509 				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
    510 				RB_COLOR(parent, field) = RB_BLACK;	\
    511 				if (RB_LEFT(tmp, field))		\
    512 					RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
    513 				RB_ROTATE_RIGHT(head, parent, tmp, field);\
    514 				elm = RB_ROOT(head);			\
    515 				break;					\
    516 			}						\
    517 		}							\
    518 	}								\
    519 	if (elm)							\
    520 		RB_COLOR(elm, field) = RB_BLACK;			\
    521 }									\
    522 									\
    523 attr struct type *							\
    524 name##_RB_REMOVE(struct name *head, struct type *elm)			\
    525 {									\
    526 	struct type *child, *parent, *old = elm;			\
    527 	int color;							\
    528 	if (RB_LEFT(elm, field) == NULL)				\
    529 		child = RB_RIGHT(elm, field);				\
    530 	else if (RB_RIGHT(elm, field) == NULL)				\
    531 		child = RB_LEFT(elm, field);				\
    532 	else {								\
    533 		struct type *left;					\
    534 		elm = RB_RIGHT(elm, field);				\
    535 		while ((left = RB_LEFT(elm, field)) != NULL)		\
    536 			elm = left;					\
    537 		child = RB_RIGHT(elm, field);				\
    538 		parent = RB_PARENT(elm, field);				\
    539 		color = RB_COLOR(elm, field);				\
    540 		if (child)						\
    541 			RB_PARENT(child, field) = parent;		\
    542 		if (parent) {						\
    543 			if (RB_LEFT(parent, field) == elm)		\
    544 				RB_LEFT(parent, field) = child;		\
    545 			else						\
    546 				RB_RIGHT(parent, field) = child;	\
    547 			RB_AUGMENT(parent);				\
    548 		} else							\
    549 			RB_ROOT(head) = child;				\
    550 		if (RB_PARENT(elm, field) == old)			\
    551 			parent = elm;					\
    552 		(elm)->field = (old)->field;				\
    553 		if (RB_PARENT(old, field)) {				\
    554 			if (RB_LEFT(RB_PARENT(old, field), field) == old)\
    555 				RB_LEFT(RB_PARENT(old, field), field) = elm;\
    556 			else						\
    557 				RB_RIGHT(RB_PARENT(old, field), field) = elm;\
    558 			RB_AUGMENT(RB_PARENT(old, field));		\
    559 		} else							\
    560 			RB_ROOT(head) = elm;				\
    561 		RB_PARENT(RB_LEFT(old, field), field) = elm;		\
    562 		if (RB_RIGHT(old, field))				\
    563 			RB_PARENT(RB_RIGHT(old, field), field) = elm;	\
    564 		if (parent) {						\
    565 			left = parent;					\
    566 			do {						\
    567 				RB_AUGMENT(left);			\
    568 			} while ((left = RB_PARENT(left, field)) != NULL); \
    569 		}							\
    570 		goto color;						\
    571 	}								\
    572 	parent = RB_PARENT(elm, field);					\
    573 	color = RB_COLOR(elm, field);					\
    574 	if (child)							\
    575 		RB_PARENT(child, field) = parent;			\
    576 	if (parent) {							\
    577 		if (RB_LEFT(parent, field) == elm)			\
    578 			RB_LEFT(parent, field) = child;			\
    579 		else							\
    580 			RB_RIGHT(parent, field) = child;		\
    581 		RB_AUGMENT(parent);					\
    582 	} else								\
    583 		RB_ROOT(head) = child;					\
    584 color:									\
    585 	if (color == RB_BLACK)						\
    586 		name##_RB_REMOVE_COLOR(head, parent, child);		\
    587 	return (old);							\
    588 }									\
    589 									\
    590 /* Inserts a node into the RB tree */					\
    591 attr struct type *							\
    592 name##_RB_INSERT(struct name *head, struct type *elm)			\
    593 {									\
    594 	struct type *tmp;						\
    595 	struct type *parent = NULL;					\
    596 	int comp = 0;							\
    597 	tmp = RB_ROOT(head);						\
    598 	while (tmp) {							\
    599 		parent = tmp;						\
    600 		comp = (cmp)(elm, parent);				\
    601 		if (comp < 0)						\
    602 			tmp = RB_LEFT(tmp, field);			\
    603 		else if (comp > 0)					\
    604 			tmp = RB_RIGHT(tmp, field);			\
    605 		else							\
    606 			return (tmp);					\
    607 	}								\
    608 	RB_SET(elm, parent, field);					\
    609 	if (parent != NULL) {						\
    610 		if (comp < 0)						\
    611 			RB_LEFT(parent, field) = elm;			\
    612 		else							\
    613 			RB_RIGHT(parent, field) = elm;			\
    614 		RB_AUGMENT(parent);					\
    615 	} else								\
    616 		RB_ROOT(head) = elm;					\
    617 	name##_RB_INSERT_COLOR(head, elm);				\
    618 	return (NULL);							\
    619 }									\
    620 									\
    621 /* Finds the node with the same key as elm */				\
    622 attr struct type *							\
    623 name##_RB_FIND(struct name *head, struct type *elm)			\
    624 {									\
    625 	struct type *tmp = RB_ROOT(head);				\
    626 	int comp;							\
    627 	while (tmp) {							\
    628 		comp = cmp(elm, tmp);					\
    629 		if (comp < 0)						\
    630 			tmp = RB_LEFT(tmp, field);			\
    631 		else if (comp > 0)					\
    632 			tmp = RB_RIGHT(tmp, field);			\
    633 		else							\
    634 			return (tmp);					\
    635 	}								\
    636 	return (NULL);							\
    637 }									\
    638 									\
    639 /* Finds the first node greater than or equal to the search key */	\
    640 attr struct type *							\
    641 name##_RB_NFIND(struct name *head, struct type *elm)			\
    642 {									\
    643 	struct type *tmp = RB_ROOT(head);				\
    644 	struct type *res = NULL;					\
    645 	int comp;							\
    646 	while (tmp) {							\
    647 		comp = cmp(elm, tmp);					\
    648 		if (comp < 0) {						\
    649 			res = tmp;					\
    650 			tmp = RB_LEFT(tmp, field);			\
    651 		}							\
    652 		else if (comp > 0)					\
    653 			tmp = RB_RIGHT(tmp, field);			\
    654 		else							\
    655 			return (tmp);					\
    656 	}								\
    657 	return (res);							\
    658 }									\
    659 									\
    660 /* ARGSUSED */								\
    661 attr struct type *							\
    662 name##_RB_NEXT(struct type *elm)					\
    663 {									\
    664 	if (RB_RIGHT(elm, field)) {					\
    665 		elm = RB_RIGHT(elm, field);				\
    666 		while (RB_LEFT(elm, field))				\
    667 			elm = RB_LEFT(elm, field);			\
    668 	} else {							\
    669 		if (RB_PARENT(elm, field) &&				\
    670 		    (elm == RB_LEFT(RB_PARENT(elm, field), field)))	\
    671 			elm = RB_PARENT(elm, field);			\
    672 		else {							\
    673 			while (RB_PARENT(elm, field) &&			\
    674 			    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
    675 				elm = RB_PARENT(elm, field);		\
    676 			elm = RB_PARENT(elm, field);			\
    677 		}							\
    678 	}								\
    679 	return (elm);							\
    680 }									\
    681 									\
    682 /* ARGSUSED */								\
    683 attr struct type *							\
    684 name##_RB_PREV(struct type *elm)					\
    685 {									\
    686 	if (RB_LEFT(elm, field)) {					\
    687 		elm = RB_LEFT(elm, field);				\
    688 		while (RB_RIGHT(elm, field))				\
    689 			elm = RB_RIGHT(elm, field);			\
    690 	} else {							\
    691 		if (RB_PARENT(elm, field) &&				\
    692 		    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))	\
    693 			elm = RB_PARENT(elm, field);			\
    694 		else {							\
    695 			while (RB_PARENT(elm, field) &&			\
    696 			    (elm == RB_LEFT(RB_PARENT(elm, field), field)))\
    697 				elm = RB_PARENT(elm, field);		\
    698 			elm = RB_PARENT(elm, field);			\
    699 		}							\
    700 	}								\
    701 	return (elm);							\
    702 }									\
    703 									\
    704 attr struct type *							\
    705 name##_RB_MINMAX(struct name *head, int val)				\
    706 {									\
    707 	struct type *tmp = RB_ROOT(head);				\
    708 	struct type *parent = NULL;					\
    709 	while (tmp) {							\
    710 		parent = tmp;						\
    711 		if (val < 0)						\
    712 			tmp = RB_LEFT(tmp, field);			\
    713 		else							\
    714 			tmp = RB_RIGHT(tmp, field);			\
    715 	}								\
    716 	return (parent);						\
    717 }
    718 
    719 #define RB_NEGINF	-1
    720 #define RB_INF	1
    721 
    722 #define RB_INSERT(name, x, y)	name##_RB_INSERT(x, y)
    723 #define RB_REMOVE(name, x, y)	name##_RB_REMOVE(x, y)
    724 #define RB_FIND(name, x, y)	name##_RB_FIND(x, y)
    725 #define RB_NFIND(name, x, y)	name##_RB_NFIND(x, y)
    726 #define RB_NEXT(name, x, y)	name##_RB_NEXT(y)
    727 #define RB_PREV(name, x, y)	name##_RB_PREV(y)
    728 #define RB_MIN(name, x)		name##_RB_MINMAX(x, RB_NEGINF)
    729 #define RB_MAX(name, x)		name##_RB_MINMAX(x, RB_INF)
    730 
    731 #define RB_FOREACH(x, name, head)					\
    732 	for ((x) = RB_MIN(name, head);					\
    733 	     (x) != NULL;						\
    734 	     (x) = name##_RB_NEXT(x))
    735 
    736 #define RB_FOREACH_FROM(x, name, y)					\
    737 	for ((x) = (y);							\
    738 	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
    739 	     (x) = (y))
    740 
    741 #define RB_FOREACH_SAFE(x, name, head, y)				\
    742 	for ((x) = RB_MIN(name, head);					\
    743 	    ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL);	\
    744 	     (x) = (y))
    745 
    746 #define RB_FOREACH_REVERSE(x, name, head)				\
    747 	for ((x) = RB_MAX(name, head);					\
    748 	     (x) != NULL;						\
    749 	     (x) = name##_RB_PREV(x))
    750 
    751 #define RB_FOREACH_REVERSE_FROM(x, name, y)				\
    752 	for ((x) = (y);							\
    753 	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
    754 	     (x) = (y))
    755 
    756 #define RB_FOREACH_REVERSE_SAFE(x, name, head, y)			\
    757 	for ((x) = RB_MAX(name, head);					\
    758 	    ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL);	\
    759 	     (x) = (y))
    760 
    761 #endif	/* _SYS_TREE_H_ */